Optimal Design of the Time-Dependent Support of Bang-Bang Type Controls for the Approximate Controllability of the Heat Equation

نویسنده

  • Francisco Periago
چکیده

We consider the nonlinear optimal shape design problem which consists in minimizing the amplitude of bang-bang type controls for the approximate controllability of a linear heat equation with a bounded potential. The design variable is the time-dependent support of the control. As usual, a volume constraint is imposed on the design variable. Thus, we look for the best space-time shape and location of the support of the control among those which have the same Lebesgue measure. Since the admissibility set for the problem is not convex, we first obtain a well-posed relaxation of the original problem and then use it to derive a descent method for the numerical resolution of the problem. Numerical experiments in 2D seem to indicate that, even for a regular initial datum, the original problem does not have a solution and therefore a true relaxation phenomenon occurs in this context. Also, we implement a simple algorithm for computing a quasi-optimal domain for the original problem from the optimal solution of its associated relaxed one.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bang-bang property for time optimal control of semilinear heat equation

This paper studies the bang-bang property for time optimal controls governed by semilinear heat equation in a bounded domain with control acting locally in a subset. Also, we present the null controllability cost for semilinear heat equation and an observability estimate from a positive measurable set in time for the linear heat equation with potential.

متن کامل

Solution of Bang-Bang Optimal Control Problems by Using Bezier Polynomials

In this paper, a new numerical method is presented for solving the optimal control problems of Bang-Bang type with free or fixed terminal time. The method is based on Bezier polynomials which are presented in any interval as $[t_0,t_f]$. The problems are reduced to a constrained problems which can be solved by using Lagrangian method. The constraints of these problems are terminal state and con...

متن کامل

Some optimal control problems of heat equations with weighted controls

In this paper, the time and norm optimal control problems of controlled heat equations with a weight function are considered. For the time optimal problems, we study the following two cases: one is for equations with multi-domain control under null controllability, and the other is for equations under approximate null controllability. We prove the solvability, and obtain the bang-bang principle...

متن کامل

COMPARISON BETWEEN MINIMUM AND NEAR MINIMUM TIME OPTIMAL CONTROL OF A FLEXIBLE SLEWING SPACECRAFT

In this paper, a minimum and near-minimum time optimal control laws are developed and compared for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The control commands are considered as typical bang-bang with multiple symmetrical switches, the time optimal control solution for the rigid-body mode is obtained as a bang-bang function and app...

متن کامل

Time optimal boundary controls for the heat equation

The fact that the time optimal controls for parabolic equations have the bang–bang property has been recently proved for controls distributed inside the considered domain (interior control). The main result in this article asserts that the boundary controls for the heat equation have the same property, at least in rectangular domains. This result is proved by combining methods from traditionall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2014